Do phosphatidylinositides modulate vertebrate phototransduction?
نویسندگان
چکیده
Mammalian rod cyclic nucleotide gated (CNG) channels (i.e., alpha plus beta subunits) are strongly inhibited by phosphatidylinositol 4, 5-bisphosphate (PIP(2)) when they are expressed in Xenopus oocytes and studied in giant membrane patches. Cytoplasmic Mg-ATP inhibits CNG currents similarly, and monoclonal antibodies to PIP(2) reverse the effect and hyperactivate currents. When alpha subunits are expressed alone, PIP(2) inhibition is less strong; olfactory CNG channels are not inhibited. In giant patches from rod outer segments, inhibition by PIP(2) is intermediate. Other anionic lipids (e.g., phosphatidyl serine and phosphatidic acid), a phosphatidylinositol-specific phospholipase C, and full-length diacylglycerol have stimulatory effects. Although ATP also potently inhibits cGMP-activated currents in rod patches, the following findings indicate that ATP is used to transphosphorylate GMP, generated from cGMP, to GTP. First, a phosphodiesterase (PDE) inhibitor, Zaprinast, blocks inhibition by ATP. Second, inhibition can be rapidly reversed by exogenous regulator of G-protein signaling 9, suggesting G-protein activation by ATP. Third, the reversal of ATP effects is greatly slowed when cyclic inosine 5'-monophosphate is used to activate currents, as expected for slow inosine 5' triphosphate hydrolysis by G-proteins. Still, other results remain suggestive of regulatory roles for PIP(2). First, the cGMP concentration producing half-maximal CNG channel activity (K(1/2)) is decreased by PIP(2) antibody in the presence of PDE inhibitors. Second, the activation of PDE activity by several nucleotides, monitored electrophysiologically and biochemically, is reversed by PIP(2) antibody. Third, exogenous PIP(2) can enhance PDE activation by nucleotides.
منابع مشابه
Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.
Light sensing starts with phototransduction in photoreceptor cells. The phototransduction cascade has diverged in different species, such as those mediated by transducin in vertebrate rods and cones, by G(q)-type G protein in insect and molluscan rhabdomeric-type visual cells and vertebrate photosensitive retinal ganglion cells, and by G(o)-type G protein in scallop ciliary-type visual cells. H...
متن کاملIs vertebrate phototransduction solved? New insights into the molecular mechanism of phototransduction.
Rods and cones use phototransduction to convert the energy of an absorbed photon to an electrophysiological signal. Recent application of multidisciplinary techniques to the study of phototransduction has clarified several fundamental steps between the photon capture and physiological responses (Fig. 1). Important discoveries during the last two years have paved the way for further research on ...
متن کاملG Protein Deactivation Mechanisms in Vertebrate Phototransduction
H.-Y. Tu Institute of Molecular Medicine, National Tsing-Hua University, No. 101, Section 2, Kuang-Fu Road, 30013 Hsinchu, Taiwan, Republic of China e-mail: [email protected] Abstract Heterotrimeric G proteins are widely used in nature to facilitate cellular responses to extracellular stimuli. In humans, these G proteins mediate vision and other senses, modulate neurotransmission, and are...
متن کاملRole of guanylyl cyclase modulation in mouse cone phototransduction.
A negative phototransduction feedback in rods and cones is critical for the timely termination of their light responses and for extending their function to a wide range of light intensities. The calcium feedback mechanisms that modulate phototransduction in rods have been studied extensively. However, the corresponding modulation mechanisms that enable cones to terminate rapidly their light res...
متن کاملEvolution of vertebrate rod and cone phototransduction genes.
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2000